16,980 research outputs found

    All chain Loran-C time synchronization

    Get PDF
    A program is in progress to implement coordinated universal time (UTC) synchronization on all Loran-C transmissions. The present capability is limited to five Loran-C chains in which the tolerance is twenty-five microseconds with respect to UTC. Upon completion of the program, the transmissions of all Loran-C chains will be maintained within five microseconds of UTC. The improvement plan consists of equipping selected Loran-C transmitting stations for greater precision of frequency standard adjustment and improved monitoring capability. External time monitor stations will utilize television time transfer techniques with nearby SATCOM terminals where practicable, thus providing the requisite traceability to the Naval Observatory. The monitor equipment groups and the interrelationships with the ground station equipment are discussed. After a brief review of control doctrine, forth-coming improvements to transmitting stations and how the time monitor and navigation equipments will complement each other resulting in improved service to all users of the Loran-C system are described

    A comparison of visual and haltere-mediated equilibrium reflexes in the fruit fly Drosophila melanogaster

    Get PDF
    Flies exhibit extraordinary maneuverability, relying on feedback from multiple sensory organs to control flight. Both the compound eyes and the mechanosensory halteres encode angular motion as the fly rotates about the three body axes during flight. Since these two sensory modalities differ in their mechanisms of transduction, they are likely to differ in their temporal responses. We recorded changes in stroke kinematics in response to mechanical and visual rotations delivered within a flight simulator. Our results show that the visual system is tuned to relatively slow rotation whereas the haltere-mediated response to mechanical rotation increases with rising angular velocity. The integration of feedback from these two modalities may enhance aerodynamic performance by enabling the fly to sense a wide range of angular velocities during flight

    Summation of visual and mechanosensory feedback in Drosophila flight control

    Get PDF
    The fruit fly Drosophila melanogaster relies on feedback from multiple sensory modalities to control flight maneuvers. Two sensory organs, the compound eyes and mechanosensory hindwings called halteres, are capable of encoding angular velocity of the body during flight. Although motor reflexes driven by the two modalities have been studied individually, little is known about how the two sensory feedback channels are integrated during flight. Using a specialized flight simulator we presented tethered flies with simultaneous visual and mechanosensory oscillations while measuring compensatory changes in stroke kinematics. By varying the relative amplitude, phase and axis of rotation of the visual and mechanical stimuli, we were able to determine the contribution of each sensory modality to the compensatory motor reflex. Our results show that over a wide range of experimental conditions sensory inputs from halteres and the visual system are combined in a weighted sum. Furthermore, the weighting structure places greater influence on feedback from the halteres than from the visual system

    Structure and utilization of supersonic free jets in low density wind tunnels

    Get PDF
    Inviscid and slightly viscous flow in supersonic free jet core, and low density wind tunnel application

    MHD boundary layers with non-equilibrium ionization and finite rates Quarterly report, 1 Jun. - 1 Sep. 1969

    Get PDF
    Ionization and recombination rates in boundary layer of magnetohydrodynamic channel electrod

    Low-Frequency Quantum Oscillations due to Strong Electron Correlations

    Full text link
    The normal-state energy spectrum of the two-dimensional tt-JJ model in a homogeneous perpendicular magnetic field is investigated. The density of states at the Fermi level as a function of the inverse magnetic field 1B\frac{1}{B} reveals oscillations in the range of hole concentrations 0.08<x<0.180.08<x<0.18. The oscillations have both high- and low-frequency components. The former components are connected with large Fermi surfaces, while the latter with van Hove singularities in the Landau subbands, which traverse the Fermi level with changing BB. The singularities are related to bending the Landau subbands due to strong electron correlations. Frequencies of these components are of the same order of magnitude as quantum oscillation frequencies observed in underdoped cuprates.Comment: 10 pages, 3 figures, Proc. NSS-2013, Yalta. arXiv admin note: text overlap with arXiv:1308.056

    A magnetogasdynamic power generation study third quarterly progress report

    Get PDF
    Calculations of preionized plasma flow with finite recombination rate - magnetohydrodynamic power generator stud

    Low-frequency incommensurate magnetic response in strongly correlated systems

    Full text link
    It is shown that in the t-J model of Cu-O planes at low frequencies the dynamic spin structure factor is peaked at incommensurate wave vectors (1/2+-delta,1/2)$, (1/2,1/2+-delta). The incommensurability is connected with the momentum dependencies of the magnon frequency and damping near the antiferromagnetic wave vector. The behavior of the incommensurate peaks is similar to that observed in La_{2-x}(Ba,Sr)_xCuO_{4+y} and YBa_2Cu_3O_{7-y}: for hole concentrations 0.02<x<=0.12 we find that delta is nearly proportional to x, while for x>0.12 it tends to saturation. The incommensurability disappears with increasing temperature. Generally the incommensurate magnetic response is not accompanied by an inhomogeneity of the carrier density.Comment: 4 pages, 4 figure

    The t-J model on a semi-infinite lattice

    Full text link
    The hole spectral function of the t-J model on a two-dimensional semi-infinite lattice is calculated using the spin-wave and noncrossing approximations. In the case of small hole concentration and strong correlations, tJt\gg J, several near-boundary site rows appear to be depleted of holes. The reason for this depletion is a deformation of the magnon cloud, which surrounds the hole, near the boundary. The hole depletion in the boundary region leads to a more complicated spectral function in the boundary row in comparison with its bulk shape.Comment: 8 pages, 5 figure
    corecore